Research Article
Soonri Choi, Hongjoo Ju, Jeein Kim, Jihoon Song
CONT ED TECHNOLOGY, Volume 16, Issue 2, Article No: ep507
ABSTRACT
Computer-supported collaborative learning is an instructional technique to solve complex tasks. One of the key factors to enhance collaboration is increasing the level of interdependence among the collaborators. This study was conducted to examine if the heterogeneous knowledge held by each member promoted by heterogenous instructional sequencings enhances the level of interdependence during collaboration. A quasi-experiment was conducted with college seniors preparing for their careers in a Shinhan University located in Gyeonggi-do, South Korea. The experiment consisted of two phases: one was, where students gained prior knowledge using homogeneous or heterogeneous complex-task sequencing. The other was, where they collaborated with each other using a computer-supported tool. The results showed the statistically significant difference between the two groups in terms of extraneous collective cognitive load, intrinsic motivation, and learning transfer. The collaborative groups of members, which utilized heterogeneous instructional sequencings during the individual learning phase showed relatively lower extraneous collective cognitive load, and higher intrinsic motivation in three consecutive collaborative sessions except for the first. As well as groups of members had higher learning transfer results. Implications and limitations were further discussed on results.
Keywords: collaborative learning, computer-supported collaborative learning, conservation of resource theory, collective cognitive load theory, complex-task instructional sequencings, intrinsic motivation
Research Article
Isiaka A. Gambari, Bimpe E. Gbodi, Eyitao U. Olakanmi, Eneojo N. Abalaka
CONT ED TECHNOLOGY, Volume 7, Issue 1, pp. 25-46
ABSTRACT
The role of computer-assisted instruction in promoting intrinsic and extrinsic motivation among Nigerian secondary school chemistry students was investigated in this study. The study employed two modes of computer-assisted instruction (computer simulation instruction and computer tutorial instructional packages) and two levels of gender (male and female) using pretest-posttest experimental group design. Ninety (45 males and 45 females) senior secondary one (SS1) students from three secondary schools in Minna, Nigeria, made up the sample. The schools were purposively sampled and randomly assigned to experimental and control groups. The Experimental Group I was taught two selected concepts of chemistry using computer simulation instructional package (CSIP), Experimental Group II was exposed to computer tutorial Instructional package (CTIP) while conventional teaching method (CTM) was used for the Control Group. Validated Chemistry Achievement Test (CAT) and Chemistry Motivation Questionnaire (CMQ) with reliability coefficient of 0.89 and 0.94 respectively were used for data collection. Classroom observations as well as interview schedules were also conducted. Data from CAT and CTM were analyzed using One-way ANOVA and Scheffe’s post-hoc test, while the data from the classroom observations and interview schedules were thematically analyzed. The outcome of this study revealed that students taught with CSIP performed better than those in CTIP and CTM groups. The CSIP and CTIP were found also to be gender friendly. Moreover, students taught with CSIP had higher intrinsic and extrinsic motivation than their counterparts in CTIP and CTM respectively. Based on the findings, it was recommended that chemistry teachers should employ computer simulation for improving their students’ performance and motivation in the subject.
Keywords: Computer-assisted instruction, Tutorial, Simulation, Gender, Intrinsic motivation, Extrinsic motivation